Home / Expert Answers / Other Math / widehat-d-left-begin-array-cc-cos-varphi-sin-varphi-sin-pa668

# (Solved): $\widehat{D}=\left(\begin{array}{cc} \cos \varphi & \sin \varphi \\ -\sin \ ... ??????? \[ \widehat{D}=\left(\begin{array}{cc} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{array}\right)$ a) Calculate the matrix D for angles $$\phi$$ of $$45^{\circ}, 90^{\circ}, 180^{\circ}$$, and $$360^{\circ}$$. b) Calculate the determinant of D for any angle $$\phi$$. Notice: $\operatorname{det}\left(\begin{array}{ll} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{array}\right)=a_{1,1} \cdot a_{2,2}-a_{1,2} \cdot a_{2,1} .$ c) Show that the magnitude of a vect?r $$\vec{a}=\mathrm{D}-\overrightarrow{\mathrm{n}} \mathrm{s}$$ the same as the magnitude of $$\overrightarrow{\mathrm{r}}$$, so applying the rotation matrix to a vector leaves its magnitude unchanged. d) Show by calculating the scalar product that the new vector a indeed forms an angle $$\varphi$$ with the old vector $$\vec{r}$$.

We have an Answer from Expert

Note :) According to Chegg's 2.0 answering guidelines, only (a) is eligible for answering. Solution :) i-) D=[cos?45sin?45?sin?45cos?45]=[1212?1212]
We have an Answer from Expert