Home / Expert Answers / Chemical Engineering / show-me-mathematically-how-to-obtain-the-eq-of-x-conversation-tau-frac-mathrm-v-mathrm-v-pa635

(Solved): show me mathematically how to obtain the eq of X (conversation) \( \tau=\frac{\mathrm{V}}{\mathrm{V} ...



show me mathematically how to obtain the eq of X (conversation)

\( \tau=\frac{\mathrm{V}}{\mathrm{V}_{0}}=\frac{\mathrm{X}}{\mathrm{kC}_{\mathrm{AO}}(1-\mathrm{X})^{2}} \)
\( \mathrm{X}=\fr
\( \tau=\frac{\mathrm{V}}{\mathrm{V}_{0}}=\frac{\mathrm{X}}{\mathrm{kC}_{\mathrm{AO}}(1-\mathrm{X})^{2}} \) \( \mathrm{X}=\frac{\left(1+2 \tau \mathrm{kC}_{\mathrm{A} 0}\right)-\sqrt{\left(1+2 \tau \mathrm{kC}_{\mathrm{A} 0}\right)^{2}-\left(2 \tau \mathrm{kC}_{\mathrm{A} 0}\right)^{2}}}{2 \tau \mathrm{kC}_{\mathrm{AO}}} \) \( =\frac{\left(1+2 \tau \mathrm{kC}_{\mathrm{A} 0}\right)-\sqrt{1+4 \tau \mathrm{kC}_{\mathrm{A} 0}}}{2 \tau \mathrm{kC}_{\mathrm{AO}}} \)


We have an Answer from Expert

View Expert Answer

Expert Answer


expand Fourier Series and find coefficients in Interval [1,1] f(x) = 1-x in 14220 = is continuous in -14x40 {as f is polynomial f(x) = 0 in 02241 f(x)
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe