Home / Expert Answers / Mechanical Engineering / next-needed-asap-please-nbsp-consider-the-following-transfer-function-frac-c-s-r-s-pa395

# (Solved): Next NEEDED ASAP PLEASE   Consider the following transfer function $\frac{C(s)}{R(s)}= ... Next NEEDED ASAP PLEASE Consider the following transfer function \[ \frac{C(s)}{R(s)}=\frac{s+3}{(s+4)(s+6)}$ From the information given which one of the following is the correct controller canonical form? $$\dot{x}=\left[\begin{array}{ll}-10 & 1 \\ -24 & 0\end{array}\right] x+\left[\begin{array}{l}1 \\ 3\end{array}\right] \boldsymbol{r}, \quad y=\left[\begin{array}{ll}1 & 0\end{array}\right] \boldsymbol{x}$$ $$\dot{x}=\left[\begin{array}{cc}1 & 0 \\ -10 & -24\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] r, \quad y=\left[\begin{array}{ll}3 & 1\end{array}\right] x$$ c. $$\dot{x}=\left[\begin{array}{cc}-10 & -24 \\ 1 & 0\end{array}\right] \boldsymbol{x}+\left[\begin{array}{l}1 \\ 0\end{array}\right] \boldsymbol{r}, \quad y=\left[\begin{array}{ll}1 & 3\end{array}\right] x$$ d. $$\dot{x}=\left[\begin{array}{cc}-24 & -10 \\ 1 & 0\end{array}\right] x+\left[\begin{array}{l}1 \\ 0\end{array}\right] r, \quad y=\left[\begin{array}{ll}1 & 3\end{array}\right] x$$ The signal flow graph of a system is shown below. $$\dot{x}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, c=\left[\begin{array}{ll}0 & 0.5\end{array}\right] x$$ $$\dot{x}=\left[\begin{array}{rr}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] \boldsymbol{u}, \mathrm{c}=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] \boldsymbol{x}$$ $$\dot{x}=\left[\begin{array}{rr}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, \mathrm{c}=\left[\begin{array}{ll}0 & 0.5\end{array}\right] x$$ $$\dot{x}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, c=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] x$$

We have an Answer from Expert