Home / Expert Answers / Mechanical Engineering / next-needed-asap-please-nbsp-consider-the-following-transfer-function-frac-c-s-r-s-pa395

(Solved): Next NEEDED ASAP PLEASE   Consider the following transfer function \[ \frac{C(s)}{R(s)}= ...



Consider the following transfer function
\[
\frac{C(s)}{R(s)}=\frac{s+3}{(s+4)(s+6)}
\]
From the information given which one

Next

The signal flow graph of a system is shown below.
\( \dot{x}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left

NEEDED ASAP PLEASE

 

Consider the following transfer function \[ \frac{C(s)}{R(s)}=\frac{s+3}{(s+4)(s+6)} \] From the information given which one of the following is the correct controller canonical form? \( \dot{x}=\left[\begin{array}{ll}-10 & 1 \\ -24 & 0\end{array}\right] x+\left[\begin{array}{l}1 \\ 3\end{array}\right] \boldsymbol{r}, \quad y=\left[\begin{array}{ll}1 & 0\end{array}\right] \boldsymbol{x} \) \( \dot{x}=\left[\begin{array}{cc}1 & 0 \\ -10 & -24\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] r, \quad y=\left[\begin{array}{ll}3 & 1\end{array}\right] x \) c. \( \dot{x}=\left[\begin{array}{cc}-10 & -24 \\ 1 & 0\end{array}\right] \boldsymbol{x}+\left[\begin{array}{l}1 \\ 0\end{array}\right] \boldsymbol{r}, \quad y=\left[\begin{array}{ll}1 & 3\end{array}\right] x \) d. \( \dot{x}=\left[\begin{array}{cc}-24 & -10 \\ 1 & 0\end{array}\right] x+\left[\begin{array}{l}1 \\ 0\end{array}\right] r, \quad y=\left[\begin{array}{ll}1 & 3\end{array}\right] x \) The signal flow graph of a system is shown below. \( \dot{x}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, c=\left[\begin{array}{ll}0 & 0.5\end{array}\right] x \) \( \dot{x}=\left[\begin{array}{rr}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] \boldsymbol{u}, \mathrm{c}=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] \boldsymbol{x} \) \( \dot{x}=\left[\begin{array}{rr}-1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, \mathrm{c}=\left[\begin{array}{ll}0 & 0.5\end{array}\right] x \) \( \dot{x}=\left[\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right] x+\left[\begin{array}{l}0 \\ 2\end{array}\right] u, c=\left[\begin{array}{ll}0.5 & 0.5\end{array}\right] x \)


We have an Answer from Expert

View Expert Answer

Expert Answer


Consider the following transfer func
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe