Home / Expert Answers / Electrical Engineering / nees-asap-consider-the-following-transfer-function-frac-c-s-r-s-frac-s-3-s-4-s-6-fr-pa434

# (Solved): Nees ASAP Consider the following transfer function $\frac{C(s)}{R(s)}=\frac{s+3}{(s+4)(s+6)}$ Fr ...

Nees ASAP

Consider the following transfer function $\frac{C(s)}{R(s)}=\frac{s+3}{(s+4)(s+6)}$ From the information given which one of the following is the correct parallel canonical form? a. $\dot{x}=\left[\begin{array}{cc} -4 & 0 \\ 0 & -6 \end{array}\right] x+\left[\begin{array}{c} \frac{-1}{2} \\ \frac{3}{2} \end{array}\right] r, \quad y=\left[\begin{array}{ll} 1 & 1 \end{array}\right] x$ b. $\dot{x}=\left[\begin{array}{cc} -10 & 0 \\ 1 & -24 \end{array}\right] x+\left[\begin{array}{c} \frac{-1}{2} \\ \frac{3}{2} \end{array}\right] r, \quad y=\left[\begin{array}{ll} -3 & 1 \end{array}\right] x$ c. $$\dot{x}=\left[\begin{array}{cc}1 & 0 \\ -10 & -24\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] r, \quad y=\left[\begin{array}{ll}3 & 1\end{array}\right] x$$ d. $$\dot{x}=\left[\begin{array}{cc}-10 & -24 \\ 1 & 0\end{array}\right] x+\left[\begin{array}{c}\frac{-3}{2} \\ \frac{1}{2}\end{array}\right] r, \quad y=\left[\begin{array}{ll}1 & 3\end{array}\right] x$$

We have an Answer from Expert