11.15 (Biaxial bending) Determine the load capacity, \( P_{n} \), for the column sections shown in Figs. \( 11.32 \) through \( 11.35 \) if \( e_{y}=8 \) in. and \( e_{x}=6 \) ini. using the Bresler reciprocal method. Use \( f_{c}^{\prime}(4 \mathrm{ksi}) \) and \( f_{y}=60 \mathrm{ksi} \). For each problem the values of \( P_{n x}, P_{n y}, P_{n 0}\left(P_{b x}, M_{b x}\right) \), and \( \left(P_{b y}, M_{b y}\right) \) are as follows: a. Figure 11.33: \( 930 \mathrm{~K}, 1108 \mathrm{~K}, 2505 \mathrm{~K}(577 \mathrm{~K}, 742 \mathrm{~K} \cdot \mathrm{ft}),(577 \mathrm{~K}, 742 \mathrm{~K} \). ft). b. Figure 11.32: \( 952 \mathrm{~K}, 835 \mathrm{~K}, 2168 \mathrm{~K}(571 \mathrm{~K}, 792 \mathrm{~K} \cdot \mathrm{ft}),(536 \mathrm{~K}, 483 \mathrm{~K} \cdot \mathrm{ft}) \). c. Figure 11.34: \( 558 \mathrm{~K}, 495 \mathrm{~K}, 1408 \mathrm{~K}(408 \mathrm{~K}, 414 \mathrm{~K} \cdot \mathrm{ft}),(368 \mathrm{~K}, 260 \mathrm{~K} \cdot \mathrm{ft}) \). d. Figure 11.35: \( 1093 \mathrm{~K}, 1145 \mathrm{~K}, 2538 \mathrm{~K}(718 \mathrm{~K}, 865 \mathrm{~K} \cdot \mathrm{ft}),(701 \mathrm{~K}, 699 \mathrm{~K} \). ft).
Figure 1r.02 rroviem 17.4.
Figure 11.33 Problem 11.5.
Figure 11.34 Problem 11.6.
DBLEMS Figure 11.35 Problem 11.7.