# (Solved): electromagnetics, please hurry A uniform plane wave is incident normally on an air-sea water interfa ...

A uniform plane wave is incident normally on an air-sea water interface at $$\mathrm{z}=0$$. The phasor expression of the incident electric field intensity is: $\bar{E}^{\prime}(z)=2 \hat{a}_{x} e^{-\left(\frac{5 \pi}{3} \times 10^{-1}\right):}(V / m)$ The parameters of the sea-water are: $$\varepsilon=80 \varepsilon_{e}(F / m), \mu=\mu_{0}(H / m)$$ and $$\sigma=4(\mathrm{~S} / \mathrm{m})$$. Find: a) The phasor expression of the reflected wave in medium 1 . b) The phasor expression of the tramsmitted wave in medium 2 . c) The average power in the second medium. $$\beta \approx \sqrt{\pi f \mu \sigma} \quad \beta \approx \omega \sqrt{\mu \varepsilon}\left(1+\frac{1}{8}\left(\frac{\sigma}{\omega \varepsilon}\right)^{2}\right) \quad \beta=\omega \sqrt{\frac{\kappa \mu}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega s}\right)^{2}}+1\right]^{2 / 2}$$ $$\eta_{i}=(1+\lambda) \frac{\alpha}{\sigma} \quad \eta_{c}=\sqrt{\frac{\mu}{c}}\left(1+j \frac{\sigma}{2 \omega c}\right) \quad \eta_{c}=\frac{\omega \mu}{\sqrt{\alpha^{2}+\beta^{2}}} \operatorname{cxp}\left(\tan ^{-1}(\alpha / \beta)\right)$$