Home /
Expert Answers /
Calculus /
consider-the-function-f-x-left-begin-array-ll-7-cdot-x-4-x-frac-1-7-end-array-righ-pa287
(Solved): Consider the function \[ f(x)=\left\{\begin{array}{ll} 7 \cdot x+4 & x-\frac{1}{7} \end{array}\righ ...
Consider the function \[ f(x)=\left\{\begin{array}{ll} 7 \cdot x+4 & x<-\frac{1}{7} \\ 4 & x=-\frac{1}{7} \\ 147 \cdot x^{2} & x>-\frac{1}{7} \end{array}\right. \] Tick all of the following statements that are correct. \[ \lim _{x \rightarrow\left(-\frac{1}{7}\right)^{+}} f(x)=4 \] \( \lim _{x \rightarrow-\frac{1}{7}} f(x) \) exists. \( f \) has a jump discontinuity at \( x=-\frac{1}{7} \). \( \lim _{x \rightarrow\left(-\frac{1}{7}\right)} f(x)=3 \) \( f \) is continuous at \( x=-\frac{1}{7} \). \[ \lim _{x \rightarrow-\frac{1}{7}} f(x)=f\left(-\frac{1}{7}\right) \]
\( f \) has a removable discontinuity at \( x=-\frac{1}{7} \). \( f \) is discontinuous at \( x=-\frac{1}{7} \).