Home / Expert Answers / Other Math / consider-the-following-a-left-begin-array-ll-3-7-7-3-end-array-right-list-the-pa116

# (Solved): Consider the following. $A=\left[\begin{array}{ll} 3 & 7 \\ 7 & 3 \end{array}\right]$ List the ...

Consider the following. $A=\left[\begin{array}{ll} 3 & 7 \\ 7 & 3 \end{array}\right]$ List the eigenvalues of $$A$$ and bases of the correspendiny eigenspaces. (Repeated eigenvalues should be entered repeatedly with the same eigenspaces.) smaller elgerivalue larger eigenvaluo $$\lambda_{2}=$$ has eigenspace $$\operatorname{span}\left(\right.$$ bl $$^{2}$$ Determine whether $$A$$ is diagonalizable. Yes No Find an invertible matrix $$P$$ and a diagonal matrix $$D$$ such that $$P^{-1} A P=D$$. [Enter each matrix in the form [[row 1], [row 2], w. ]. where each row is a comma-separated fist. If $$A$$ is not diagonalizable, enter NO SOUUTION.) $(D, P)=()$ $$-72$$ Points] POOLELINALG4 4.4.009. Determine whether $$A$$ is diagonalizable. $A=\left[\begin{array}{ll} -5 & 9 \\ -1 & 1 \end{array}\right]$ Yes No Find an invertible matrix $$P$$ and a diagonal matrix $$D$$ such that $$P^{-1} A P=D$$. [Enter each matrix in the form [[row 1 ] . [row 2], ..' 2 . where each row is a comma-separated list. If $$A$$ is not diagonalizable, enter NO SOLUTION.)

We have an Answer from Expert

A=[3773] We shall find the eigenvalues now: det(A??I)=0 ?det([3??773??])=0 ?(3??)2?72=0 ?3??=±7 ??=?4,10
We have an Answer from Expert