Home / Expert Answers / Advanced Math / 1-the-superposition-principle-applies-when-you-have-two-functions-f-x-and-g-x-and-pa196

(Solved): 1. The superposition principle applies when you have two functions, \( f(x) \) and \( g(x) \), and ...




1. The superposition principle applies when you have two functions, \( f(x) \) and \( g(x) \), and you are trying to obtain t
1. The superposition principle applies when you have two functions, \( f(x) \) and \( g(x) \), and you are trying to obtain the graph of a. \( y=f(x)+g(x) \) b. \( y=\frac{f(x)}{g(x)} \) c. \( y=f(x) g(x) \) d. \( y=f(g(x)) \) 2. Given the functions \( f(x)=x^{2}+1 \) and \( g(x)=3-x \), determine an equation for the combined function \( y=f(x)+g(x) \). a. \( y=x^{2}-x+2 \) b. \( y=x^{2}-x+4 \) c. \( y=x^{2}+x+4 \) d. \( y=x^{2}+x-2 \) 3. Given the functions \( f(x)=x^{2}+1 \) and \( g(x)=3-x \), determine an equation for the combined function \( y=f(x) g(x) \). a. \( y=-x^{3}+3 x^{2}-x+3 \) b. \( y=-x^{3}+3 x^{2}+x-3 \) c. \( y=x^{3}+3 x^{2}-x+3 \) d. \( y=-x^{3}+2 x^{2}-x+3 \) 4. Given the functions \( f(x)=x^{3}-x \) and \( g(x)=x-1 \), determine an cquation for the combined function \( y=\frac{f(x)}{g(x)} \). a. \( y=x^{2}+x, x \neq 1 \) b. \( y=\frac{x}{x-1}, x \neq 1 \) c. \( y=x^{2}-x, x \neq 1 \) d. \( y=\frac{x^{2}-x}{x-1}, x=1 \) 5. Given the functions \( f(x)=x^{2}-x \) and \( g(x)=x-1 \), determine an equation for the composite function \( y=f(g(x)) \). a. \( y=x^{2}-3 x+1 \) b. \( y=x^{2}-3 x+2 \) c. \( y=x^{2}-x-1 \) d. \( y=x^{2}-x+1 \) 6. Given the functions \( f(x)=\sin x \) and \( g(x)=x \), determine the domain of the combined function \( y=f(x)+g(x) \). a. \( \{x \in \mathbb{R},-2 \pi \leq x \leq 2 \pi\} \) b. \( \{x \in \mathbb{R}\} \) c. \( \{x \in \mathbb{R},-1 \leq x \leq 1\} \) d. cannot be determined 7. In general, the zeros of a function \( f(x) \) appear on the graph of \( y=f(x) g(x) \) as \( A x \)-intercepts b.holes c. vertical asymptotes d. local extreme points 8. The zeros of a function \( g(x) \) appear on the graph of \( y=\frac{f(x)}{g(x)} \) as a. \( x \)-intercepts b. holes c. vertical asymptotes d. B or \( \mathrm{C} \)


We have an Answer from Expert

View Expert Answer

Expert Answer


1. (a) y=f(x)+g(x) Superimposition is given by
We have an Answer from Expert

Buy This Answer $5

Place Order

We Provide Services Across The Globe